26 research outputs found

    Semi-automated quantification of left ventricular volumes and ejection fraction by real-time three-dimensional echocardiography

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent studies have shown that real-time three-dimensional (3D) echocardiography (RT3DE) gives more accurate and reproducible left ventricular (LV) volume and ejection fraction (EF) measurements than traditional two-dimensional methods. A new semi-automated tool (4DLVQ) for volume measurements in RT3DE has been developed. We sought to evaluate the accuracy and repeatability of this method compared to a 3D echo standard.</p> <p>Methods</p> <p>LV end-diastolic volumes (EDV), end-systolic volumes (ESV), and EF measured using 4DLVQ were compared with a commercially available semi-automated analysis tool (TomTec 4D LV-Analysis ver. 2.2) in 35 patients. Repeated measurements were performed to investigate inter- and intra-observer variability.</p> <p>Results</p> <p>Average analysis time of the new tool was 141s, significantly shorter than 261s using TomTec (<it>p </it>< 0.001). Bland Altman analysis revealed high agreement of measured EDV, ESV, and EF compared to TomTec (<it>p </it>= <it>NS</it>), with bias and 95% limits of agreement of 2.1 ± 21 ml, -0.88 ± 17 ml, and 1.6 ± 11% for EDV, ESV, and EF respectively. Intra-observer variability of 4DLVQ vs. TomTec was 7.5 ± 6.2 ml vs. 7.7 ± 7.3 ml for EDV, 5.5 ± 5.6 ml vs. 5.0 ± 5.9 ml for ESV, and 3.0 ± 2.7% vs. 2.1 ± 2.0% for EF (<it>p </it>= <it>NS</it>). The inter-observer variability of 4DLVQ vs. TomTec was 9.0 ± 5.9 ml vs. 17 ± 6.3 ml for EDV (<it>p </it>< 0.05), 5.0 ± 3.6 ml vs. 12 ± 7.7 ml for ESV (<it>p </it>< 0.05), and 2.7 ± 2.8% vs. 3.0 ± 2.1% for EF (<it>p </it>= <it>NS</it>).</p> <p>Conclusion</p> <p>In conclusion, the new analysis tool gives rapid and reproducible measurements of LV volumes and EF, with good agreement compared to another RT3DE volume quantification tool.</p

    An animal-specific FSI model of the abdominal aorta in anesthetized mice

    Get PDF
    Recent research has revealed that angiotensin II-induced abdominal aortic aneurysm in mice can be related to medial ruptures occurring in the vicinity of abdominal side branches. Nevertheless a thorough understanding of the biomechanics near abdominal side branches in mice is lacking. In the current work we present a mouse-specific fluid-structure interaction (FSI) model of the abdominal aorta in ApoE(-/-) mice that incorporates in vivo stresses. The aortic geometry was based on contrast-enhanced in vivo micro-CT images, while aortic flow boundary conditions and material model parameters were based on in vivo high-frequency ultrasound. Flow waveforms predicted by FSI simulations corresponded better to in vivo measurements than those from CFD simulations. Peak-systolic principal stresses at the inner and outer aortic wall were locally increased caudal to the celiac and left lateral to the celiac and mesenteric arteries. Interestingly, these were also the locations at which a tear in the tunica media had been observed in previous work on angiotensin II-infused mice. Our preliminary results therefore suggest that local biomechanics play an important role in the pathophysiology of branch-related ruptures in angiotensin-II infused mice. More elaborate follow-up research is needed to demonstrate the role of biomechanics and mechanobiology in a longitudinal setting
    corecore